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ABSTRACT
We use L2 methods to show that if a group with a presentation of deficiency
one is an extension of Z by a finitely generated normal subgroup then
the 2-complex corresponding to any presentation of optimal deficiency is
aspherical and to prove a converse of the Cheeger-Gromov-Gottlieb
theorem relating Euler characteristic and asphericity. These results are
applied to the Whitehead conjecture, 4-manifolds and 2-knot groups.

Introduction

One of the applications of L2-cohomology in [CG] was to show that if X is a finite
aspherical complex such that #1{X) has an infinite amenable normal subgroup
A then x(X) = 0. (This generalised a theorem of Gottlieb, who assumed that A
was a central subgroup [Gt]). When A is an elementary amenable group this has
also been proven by a localization argument, and there is then a converse: if X is
a [, m]s-complex (a finite m-dimensional complex with 71(X) = 7 and with
(m ~ 1)-connected universal cover X) and 7 has a nontrivial torsion free elemen-
tary amenable group then X is aspherical if and only if x(X) = 0 ([Hi3] — see
also [Hil, Hi2, Li and Ro]). In §2 we shall show that the converse also holds when
A is merely infinite and amenable, as another easy application of L? methods.
We shall first give a similar but easier argument for groups # which are extensions
of Z by a finitely generated normal subgroup which relates the conditions “r has
deficiency 1” and “there is an aspherical [, 2]s-complex”. The result restricts
further possible counterexamples to the Whitehead problem on subcomplexes of
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aspherical 2-complexes and has interesting consequences for knot theory. In §3
and §4 we shall apply the earlier work to the homotopy characterization of certain
closed 4-manifolds and to the study of abelian subgroups of 2-knot groups.

If 7 is a group then (7 and 7' shall denote the centre and the commutator
subgroup of w, respectively. If = is finitely presentable def(r) shall denote its
deficiency. A PD,(1+)-group is an (orientable) Poincaré duality group of dimension
n. A [r,m]s;-complex X is aspherical if and only if 7, (X) = 0. In that case we
shall say that 7 has geometric dimension at most m, written g.d.# < m.

1. Extensions of Z by finitely generated normal subgroups

The L2-Betti numbers ﬁim(X ) of a finite complex X are defined in [At]. (See
also {CG], [Ec2| and [Lii]). They are multiplicative in finite covers, and for i = 0
or 1 depend only on 7;(X). In [CG] a limiting process is used to define L2-Betti
numbers 8§2)(Y; ) for general actions of countable group 7 on a space Y, and
it is shown that ﬁi(z)(w) = Bf2)(1\',,;1r), where K, is (any) contractible complex
on which 7 acts freely. If X is a finite Poincaré duality complex then these Betti
numbers satisfy Poincaré duality. The alternating sum of the L2-Betti numbers
is the Euler characteristic x(X) [At]. The usual Betti numbers of a space or
group shall be denoted by 3;(X; Q) = dimg Hi(X; Q).

THEOREM 1: Let m be a finitely presentable group such that B§2)(ﬂ) = 0 for
i <m, and let X be a [r,m]s-complex. If x(X) =0 then X is aspherical.

Proof: Since X is (m — 1)-connected ﬁfz)(X) = ﬁ§2)(7r) =0 for i < m and so
x(X) = (~1)™B2)(X). Hence B?(X) = 0 also, and so the L2-homology of X is
trivial. Since X is m-dimensional 7 (X) = Hp(X; Z) is a subgroup of the m**
L?-homology group of X. Therefore 7,,(X) =0 and so X is aspherical. |

If X = S'v S! then X is an aspherical [F(2), 1];-complex and ﬁ(z)( F(2))=0,
but x(X) = —1 # 0. Thus the implication in the statement of this theorem

cannot be reversed, in general.

THEOREM 2: Let & be a finitely presentable group. Then def(r) <1+ ﬁ12)(7r)
with equality only if g.d.w < 2.

Proof: Let X be a finite 2-complex corresponding to a presentation P for =.
Then def(P) = 1 — x(X) = 1+ 82 (r) = B2 (X) < 1+ B (x). If def(P) =
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1+ ﬂf)(w) then ﬁéz)(X) =0, so ma(X) = Hy(X;Z) = 0 and X is aspherical.
Hence g.d.mw < 2. ]

Let G = F(2) x F(2). Then ﬂgz)(G) = 0, by Proposition 2.7 of {CG]. Moreover
def(G) = 0 and g.d.G = 2; in fact

(u,v, 2,y | uz = Tu, Uy = Yu, v = TV, VY = YV)

is an optimal presentation. Thus the implication in the final sentence of the
statement of this theorem cannot be reversed, in general. (Compare the Corollary
of Theorem 3 below.)

The following lemma is part of Theorem 2.1 of [Lii] (proven there under slightly
stronger hypotheses).

LeEMMA ([Liick]): If a finitely presentable group = is an extension of Z by a
finitely generated normal subgroup N, then B?) (r) =0.

Proof: Suppose that N is generated by g elements and let N, be the preimage

in 7 of the subgroup nZ < Z. Then [m: N,] = n, so [3(2)( N,) = nﬁl )(r). But

each NN, is also finitely presentable and is generated by g + 1 elements. Hence
(N,)<g+1,andso 8P (r)=0. ®

If the Whitehead conjecture is false then either there is a finite nonaspherical
2-complex X such that X Uy D? is contractible for some f: § 1 X or there is an
infinite ascending chain of nonaspherical 2-complexes whose union is contractible
[Ho]. In the finite case x(X) = 0 and so 7 = 71(X) has deficiency 1; moreover, 7
has weight 1 since it is normally generated by the conjugacy class represented by
f. Such groups are 2-knot groups. Conversely, the exterior of a ribbon n-knot or
of a ribbon concordance between classical knots is homotopy equivalent to such a
2-complex. (The asphericity of such ribbon exteriors has been raised in Question
2 of [Co] and Question 6.5 of [Go].) If 7' is finitely generated then 6(2) () =0,
by Liick’s Lemma, and so X is aspherical, by Theorem 1.

A group is called knot-like if it has abelianization Z and deficiency 1 [Ra).
Rapaport asked whether the commutator subgroup of a knot-like group must be
free if it is finitely generated, and established this in the 2-generator, 1-relator case
[Ra]. Our next corollary provides a substantial partial answer to this question.

COROLLARY: Let 7 be a finitely presentable group which is an extension of Z by a
finitely generated normal subgroup N, and suppose that Bs(m; Q) = f1(7; Q) —1.



274 J. A. HILLMAN Isr. J. Math.

Then def(r) = 1 if and only if g.d.w < 2. If def(w) =1 and N is almost finitely
presentable then N is free.

Proof: If def(x) = 1 then g.d.r < 2 by Liick’s Lemma and Theorem 2.
Conversely, if X is a finite aspherical 2-complex with 7;(X) & 7 then x(X) =
1~ 51 (7; Q)+ Ba(m; Q) = 0. After collapsing a maximal tree in X we may assume
it has a single O-cell, and then the presentation read off the 1- and 2-cells has

deficiency 1. The final assertion then follows from Corollary 8.6 of [Bi. [ |

In particular, if the group of a fibred 2-knot has a presentation of deficiency
1 then its commutator subgroup must be free. Any 2-knot with such a group
is s-concordant to a fibred homotopy ribbon knot, by Theorem VIIL7 of [Hi2].
Must it in fact be a ribbon knot?

The kernel of the homomorphism from the group F(2) x F(2) with presentation

(u,v, 7,y | ur = TU, UY = YU, vT = TV, VY = YV)

to Z which sends u and y to 0 and v and z to a generator is generated by wu,
vz~! and y, but is not free, as u and y generate a rank two abelian subgroup.
(Thus this kernel is finitely generated but not almost finitely presentable. See
page 119 of [Bi].) Silver has given examples of high-dimensional knot groups
whose commutator subgroups are finitely generated but not finitely presentable
[Si1]. He has also suggested that every knot-like group should have a finitely
presentable HNN base. If this were true the Corollary would settle Rapaport’s
question completely, for if the commutator subgroup is finitely generated then it
is the unique HNN base [Si2].

2. Infinite amenable normal subgroups

The following result is stated without proof on page 226 of [Gr]. I am grateful
to Peter Linnell for explaining how it follows from the argument of §3 of [CG].

THEOREM ([Gromov]): Let m be a group with an infinite amenable normal
subgroup A. Then ﬁfz)(w) =0 for all i.

Proof: Since K 4 X K, (with the diagonal 7-action) is m-freely homotopy
equivalent to K, we have ﬂfz)(w) = ﬂfz)(K,r /4 X Kx; ), for all i. This is in turn
equal to ﬂ,@)(K =/4; T), by Proposition 2.2 of [CG]. Now the cell-stabilizers of the
action of 7 on K, /4 are all A, and by Theorem 0.2 of [CG], ﬂ,(z)(A) = 0, for
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all i. Since £ (K,/4;m) < £6(A), by Theorem 0.1 of [CG], it follows that
ﬂt@) (z) = ﬂ§2)(Kﬂ/A; 7} =0, for all 4. |

Since the amenability of A is used only to ensure that ﬁi(z) (A)y=0for all 4, it
is sufficient to assume that A be subnormal in 7 and ﬁ,-(z) (A) = 0 for all 7. (Note
however that if a group has an infinite amenable subnormal subgroup then it has
an infinite amenable normal subgroup.)

The next result gives a converse to the Cheeger—-Gromov extension of Gottlieb’s

Theorem.

THEOREM 3: Let X be a [m,m]s-complex and suppose that w has an infinite
amenable normal subgroup. Then X is aspherical if and only if x(X) = 0.

Proof:  Since x(X) = (-1)%3,‘3’()( } this follows immediately from Gromov’s
Theorem and Theorem 1. ]

COROLLARY: Let m be a finitely presentable group with an infinite amenable
normal subgroup A. Then def(n) =1 if and only if g.d.7 < 2.

Proof: If X is an aspherical [r,2]s-complex then x(X) = 0 by Gromov’s
Theorem, so def(r) = 1 — x(X) = 1. Conversely if X is the finite 2-complex
corresponding to a presentation of deficiency 1 then x(X) = 0 and so X is
aspherical by Theorem 3. |

In [Hi3] it is shown that if def(x) = 1 and the subgroup A is elementary
amenable then either A 2 Z or 7 is metabelian. Is this true in general? (If the
Tits alternative holds for groups of finite cohomological dimension this would be

s0.)

3. Applications to 4-manifolds
The following theorem is implicit in the addendum to [Ec2].

THEOREM ([Eckmann]): Let M be a finite PD4-complex with x(M) = 0 and
let # = m(M). If ,3?)(71') = 0 then the natural map from H?(m; Z[x]) to
H?(M; Z[n)) is an isomorphism. In particular, if moreover H*(m;Z[x)) = 0
for s < 2 then M is aspherical.

Proof: Since M is a PDy-complex x(M) = 25((,2)(7r) —25{2)(7r)+ﬁ§2) (M). Since

w is infinite [382) () = 0, and ﬂ§2)(7r) = 0 by hypothesis. Hence ﬁgz) (M) =
x(M) = 0 also. It now follows from Proposition 1.2 of [Ec2] (the natural map
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from unreduced L%-cohomology to ordinary cohomology factors through reduced
L?-cohomology) and diagram (4) on page 504 of [Ec2] that the natural map from
H?(M; Z[r]) to H*(M; Z) is 0 (where M is the universal cover of M) and so the
map from H?(m; Z[r]) to H*(M; Z[r]) is an isomorphism. The final assertion
follows by equivariant Poincaré duality in the universal covering space. |

A related argument gives a complete and natural criterion for asphericity for
closed 4-manifolds.

THEOREM 4: Let M be a finite PD4-complex with fundamental group =. Then
M is aspherical if and only if 7 is a finitely presentable PD4-group of type FF
and x(M) = x(r).

Proof: The conditions are clearly necessary. Suppose that they hold. We
may assume that both M and = are orientable, after passing to the subgroup
Ker(w,(M)) N Ker(w; (7)), if necessary. By the L2-Index theorem x(M) =
BE (M) — 282 (M) and x(m) = B8P (r) — 28%(M). Hence the classifying
map cp: M — K(w,1) induces weak isomorphisms on reduced L2 cohomology
Hjp\(m) = H},) (M) for all i, )

The natural homomorphism f: Hf, (M) — H*(M; £2(r))" from unreduced L%
cohomology factors through HZ,(M). The induced homomorphism is a homo-
morphism of Hilbert modules and so has closed kernel. But the image of H (iz)(w)
lies in this kernel. Hence f = 0. Since H?(w; Z[r]) = 0 the homomorphism from
H?*(M; Z[x]) to H%(M; Z[r]) obtained by forgetting Z[r]-linearity is injective.
Since M is 1-connected the homomorphism from H2(M; Z[x]) to H2(M; ty(r))
induced by inclusion of coefficients is also injective. But the composite of these in-
jections may also be factored as the natural map from H*(M; Z[r]) to Hf,, (M)
followed by f. Hence H2(M;Z[r]) = 0 and so M is aspherical, by Poincaré
duality. |

The finiteness assumptions on M and 7 can be relaxed if 7 satisfies the Weak
Bass Conjecture. This theorem improves Theorem I1.5 of [Hi5], which requires
also that the classifying map cp: M — K(m, 1) have nonzero degree.

THEOREM 5: Let = be a PD}-group of type FF and with x(r) = 0. Then
def(m) < 0.

Proof: Suppose that 7 has a presentation of deficiency > 0, and let X be the
corresponding 2-complex. Then ﬂgz)(n’) - &2)(7r) < Béz)(X) - ﬂgz)(w) =x(X) <
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0. We also have 6(2)( ) — Qﬂ(2)( ) = x(m) = 0. Hence Bgz)(w) = ,3§2)(7r) =
x(X) = 0. Therefore X is aspherical, by Theorem 1, and so c.d.7 < 2. But this
contradicts the hypothesis that = is a PD4-group. |

Let Nil < GL(3, R) be the 3-dimensional nilpotent Lie group of upper trian-
gular matrices with diagonal [1,1,1,] and let T' = NilNGL(3, Z). Then M = S! x
(Nil/T) is an aspherical closed 4-manifold with x(M) =0, and m(M) = Z xT
has a presentation (s,z,y | sz = zs,sy = ys,[z,[z,y]] = [y, [z, y]] = 1) of defi-
ciency -1. Is this best possible?

The theorems of Gromov and Eckmann together enable us simplify the
hypotheses of some theorems in Chapter VI of [Hi5]. In the next result h
shall denote the Hirsch length, a natural measure of the size of an elementary
amenable group. (See [Hi3,5] for details.)

THEOREM 6: Let M be a closed 4-manifold with x(M) = 0. Suppose that
7 = m1(M) has an elementary amenable normal subgroup p with h(p) > 2 and
H?%*(m; Z[r])) = 0. Then M is aspherical. If h(p) = 2 then p is virtually abelian,
while if h(p) > 3 then M is homeomorphic to an infrasolvmanifold.

Proof: Since B§2)(7r) = 0 for all ¢, by the theorems of Eckmann and Gromov,
M is aspherical. Hence p must be torsion free and the theorem follows from
Theorems VI.2 and VI.11 of [Hi5). n

If p is torsion free, of infinite index and h{p) = 2 then the hypothesis
H?(m; Z[x]) = 0 follows from [Mi]. (See Theorem VI.11 of [Hi5].) The hy-
pothesis that the index be infinite is necessary; every group with a presentation
of the form (a,t | tat~! = a™) is torsion free and solvable of Hirsch length 2, and
is the fundamental group of some closed orientable 4-manifold with Euler char-
acteristic 0. If M is a closed orientable 4-manifold with x(M) = 0 and such that
7 = w1 (M) is amenable, has one end and H?(m; Z[r]) # 0 must 7 be one of these
groups? If h(p) > 3 can the hypothesis on H2(r; Z[n]) be dropped completely?
Can the hypotheses of this theorem be rephrased in terms of amenable normal
subgroups, using homological dimension over @ rather than Hirsch length as a
measure of the size of such groups? (This would follow from a Tits alternative
for groups of finite cohomological dimension.)

L2-Cohomology is used in [Hi6] to give a simple characterization of PDj-
complexes which are homotopy equivalent to mapping tori. In particular, a closed
4-manifold M is homotopy equivalent to the total space of a surface bundle over
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a torus if and only if x(M) = 0 and 7 = 7, (M) is an extension of Z2 by a finitely
presentable normal subgroup. The next result is an alternative characterization
of 4-manifolds covered by such bundle spaces.

THEOREM 7: Let M be a closed 4-manifold with x(M) = 0 and such that 7 =
m1(M) has a normal subgroup G of infinite index which is a PDy-group. Then
M is aspherical. If (G = 1 then M is finitely covered by a manifold which is
simple homotopy equivalent to the total space of a surface bundle over the torus.

Proof: It follows easily from the LHS spectral sequence for 7 as an extension of
H = /G by G that H*(w; Z[x]) = 0 for s < 2. After passing to a finite covering
space if necessary, we may assume that the image of H in Out(G) is torsion free,
since Out(G) is virtually of finite cohomological dimension. The image K of H
in Out(G) is isomorphic to 7/G.C(G) and H is an extension of this group by
G.C:(G)/G = Cr(G)/(G.

If (G # 1, then it is an infinite (elementary) amenable normal subgroup of
7 and so M is aspherical, by the theorems of Eckmann and Gromov. (The as-
phericity also follows from Theorem I1.6 of [Hi5], since Z[r] has a safe extension.)
If (G =1 and H has an element of infinite order then ﬂ?)(ﬂ') = 0 by Theorem
3.1 of [Li] and so M is aspherical by Eckmann’s Theorem. Moreover v.c.d.H<
v.c.d.K+¢.d.Cr(G) < oo and so H is virtually a PDs-group, by Theorem 9.11
of [Bi]. On passing to a subgroup of finite index in 7 we may assume that H
is a PDJ-group. Since we then have 0 = x(r) = x(G)x(H) and x(G) # 0 we
see that x(H) = 0. Hence H = Z2. If H is torsion then its image in Out(G)
is finite, hence trivial, so # = G.C(G) and H = Cr(G)/{(G) = Cr(G). Since
G N Cr(G) = CG is trivial T = G x Cx(G) = G x H. But then 8{¥(G x H) =0,
by Proposition 2.7 of [CG], and so G x H is a PD,-group, hence torsion free,
contrary to the assumption that H is an infinite torsion group. This completes

the argument. 1
The strategy of the next result is adapted from that of [Hi4).

THEOREM 8: Let M be a closed 4-manifold with x(M) = 0 and such that 7 =
m (M) is an extension of Z by an almost finitely presentable infinite normal
subgroup N with a nontrivial finite normal subgroup F. Then M is homotopy
equivalent to the mapping torus of a self homeomorphism of RP? x S!.

Proof: Let M be the universal covering space of M. Since N is infinite and
finitely generated 7 has one end, and so H;(M;Z) = 0 for i # 0 or 2. Let
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Il = m(M) = Ho(M; Z). We wish to show that I1 & Z, and that w = w, (M)
maps F isomorphically onto Z* = {£1}. Since B§2) (r) = 0 by Liick’s Lemma,
Poincaré duality and Eckmann’s Theorem together give an isomorphism of left
Z|n}-modules IT = mﬂ_) An application of the LHS spectral sequence for
7 as an extension of Z by N then gives IT & W;Z[NT, which is a free abelian
group.

The normal closure of F' in 7 is the product of the conjugates of F, which are
finite normal subgroups of NV, and so is locally finite. If it is infinite then NV has
one end and so H*(m; Z[r]) = 0 for s < 2, by an LHS spectral sequence argument.
Since locally finite groups are amenable Bgz)(w) = 0, by Gromov’s Theorem, and
so M must be aspherical, by Eckmann’s Theorem, contradicting the hypothesis
that 7 has nontrivial torsion. Hence we may assume that F' is normal in 7.

Let f be a nontrivial element of F. Since F is normal in 7 the centralizer C,(f)
of f has finite index in 7, and we may assume without loss of generality that F is
generated by f and is central in 7. It follows from the spectral sequence for the
projection of M onto M/F that there are isomorphisms H,,3(F; Z) & H,(F;1I)
for all s > 4, since M /F is a 4-dimensional complex. Here F' acts trivially on Z,
but we must determine its action on II.

Now central elements n of N act trivially on H!(N; Z[N]) and hence via w(n)
on II. (See [Hi4].) Thus if w(f) = 1 the sequence 0 — Z/|f{Z - 11 =11 — 0
is exact, where the right hand homomorphism is multiplication by |f|. As II is
torsion free this contradicts f # 1. Therefore if f is nontrivial it has order 2 and
w(f) = —1. Hence w: F — Z* is an isomorphism and there is an exact sequence
0—-II—=1II - Z/2Z — 0, where the left hand homomorphism is multiplication
by 2. Since II is a free abelian group it must be infinite cyclic, and so M ~ §2,
The theorem now follows from Theorems VII.4 and VIL7 of [Hi5]. |

4. Applications to 2-knots

If L: uS? — S* is a 2-link M(L) shall denote the closed orientable 4-manifold
obtained by surgery on the components of L. The link group is then 7L =
m(M(L)). If K is a 2-knot (4 = 1) M(K)' shall denote the infinite cyclic
covering space, with m;(M(K)') = 7K',

THEOREM 9: Let L: uS? — S* be a 2-link with group # = wL. If u > 2 then
(~ is finite. If u =1 and (n is infinite, then either = is a PD4-group (and so (x
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is torsion free of rank 1 or 2) or H*(w; Z[x]) # 0 and (= is finitely generated of

rank 1 or is a torsion group.

Proof: We have B§2)(7r) - 2ﬁ§2’(w) < x(M(L)) = 2(1 — p). If {7 is infinite then

gz)(w) = 0 by Gromov’s Theorem, and clearly u > 0, so we must have p = 1.
Hence L is a 2-knot. Moreover 7 has one end, i.e., H*(m; Z[x]) = 0 for s < 1.
Hence if also H?(r; Z[x]) = 0 then M(L) is aspherical, by Eckmann’s Theorem.
(In this case the centre is torsion free, and is of rank at most 2: see Theorem
V.2 of [Hi2].) If (7 has an infinite cyclic subgroup A such that {n/A is infinite
then this cohomological condition holds, for then ((7/A) is infinite, so /A has
one end, and so 7 is simply connected at oo, by Theorem 1 of [Mi]. Thus if
H?(r; Z[r]) # 0 then (r is finitely generated of rank 1 or is a torsion group.
1

In all known cases the centre of a 2-knot group is finite cyclic, Z, Z ® (Z/2Z)
or Z% and the centre of the group of a 2-link with more than one component
is trivial. Most of the results in the case u = 1 follow also via the localization
arguments of [Hi2], on observing that /A cannot have two ends (since a knot
group cannot be virtually Z?2) and has finite centre if it has infinitely many ends;
however Gromov’s Theorem is needed to exclude the possibility that {m may be
an infinite torsion group when g > 1. No examples of the latter type are known.

THEOREM 10: Let K be a 2-knot whose group = = 7K has a nontrivial abelian
normal subgroup A.

(i) If«’ is finitely presentable, then M (K is an orientable P D3-complex, and
either 7’ is finite or AN’ =1 and A= Z or M(K) is aspherical and A is
torsion free;

(ii) if A has rank 2, then M(K) is aspherical and A is torsion free, and either
7’ is a PDF -group with centre of rank 1 or A% Z? and ' is not finitely
generated;

(iii) if A hes rank > 2, then A 2 Z3 or Z* and M(K) is homeomorphic to an
infrasolvmanifold.

Proof: Suppose first that =’ is finitely presentable. If AN 7' = 1 then A is
isomorphic to a nontrivial subgroup of #/n’, and so A = Z. Hence we may
assume that 7’ is infinite and AN #’ # 1. If AN #' were finite then 7 would
be an extension of Z by Z @ (Z/2Z), by Theorem 8. But no such group has
abelianization Z. Hence we may assume that AN’ is infinite. Since 7’ then has
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one end H*(m; Z[r]) = 0 for s < 2, by an LHS spectral sequence argument. This
also holds if A has rank greater than 1 (without assuming 7’ finitely presentable),
by Theorem II1.4 of [Hi2]. The theorems of Gromov and Eckmann then imply
that M(K) is aspherical, and so 7 is a PDJ-group and A is torsion free. In all
these cases M(K)' is an orientable PDs-complex, by the main result of [Hi6].
The further observations in cases (ii) and (iii) follow from Theorem 6 above and
Theorems V.1, V.3, V.4 and VL6 of [Hi2]. n

If we assume only that 7' is finitely generated, then this theorem and Theorem
IV.5 of [Hi2] together imply that either 7’ is finite or AN 7’ = 1 or M(K)
is aspherical or A is a torsion group. There are no known examples of 2-knot
groups m with 7’ finitely generated but not finitely presentable. (See [Sil] for
higher dimensional examples.)

If A has rank 2 but is not free abelian then 7’ is a PDJ-group with centre
AN’ of rank 1 but not finitely generated (which seems unlikely). There are
no known examples with A 2 Z? and 7’ not finitely generated. All the other
possibilities allowed by this theorem occur. (See [Hi2].)

Note finally that Theorem 5 implies that no 2-knot group 7 with deficiency 1
can be a PD}-group of type FF.

ACKNOWLEDGEMENT: This work was supported by an ARC Small Grant at
the University of Sydney.
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