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ABSTRACT 

We use L2 methods to show that if a group with a presentation of deficiency 

o n e  is an extension of Z by a finitely generated normal subgroup then 

the 2-complex corresponding to any presentation of optimal deficiency is 

aspherical and to prove a converse of the Cheeger-Gromov-Gottlieb 

theorem relating Euler characteristic and asphericity. These results a r e  

applied to the Whitehead conjecture, 4-manifolds and 2-knot groups. 

Introduct ion  

One of the applications of L2-cohomology in [CG] was to show that  if X is a finite 

aspherical complex such that  ~I(X) has an infinite amenable normal subgroup 

A then )~(X) = 0. (This generalised a theorem of Gottlieb, who assumed that  A 

was a central subgroup [Gt]). When A is an elementary amenable group this has 

also been proven by a localization argument, and there is then a converse: if X is 

a [Tr, m]/-complex (a finite m-dimensional complex with 7rl(X) -~ 7r and with 

(m - 1)-connected universal cover ~7) and 7r has a nontrivial torsion free elemen- 

tary amenable group then X is aspherical if and only if )/(X) = 0 ([Hi3] - -  see 

also [Hil, Hi2, Li and Ro D. In w we shall show that the converse also holds when 

A is merely infinite and amenable, as another easy application of L 2 methods. 

We shall first give a similar but easier argument for groups r which are extensions 

of Z by a finitely generated normal subgroup which relates the conditions "~r has 

deficiency 1" and "there is an aspherical It,  2If-complex". The result restricts 

further possible counterexamples to the Whitehead problem on subcomplexes of 

Received October 1, 1995 

271 



272 J.A. HILLMAN Isr. J. Math. 

aspherical 2-complexes and has interesting consequences for knot theory. In w 

and w we shall apply the earlier work to the homotopy characterization of certain 

closed 4-manifolds and to the study of abelian subgroups of 2-knot groups. 

If 7r is a group then ~ and 7r ~ shall denote the centre and the commutator 

subgroup of r ,  respectively. If ~r is finitely presentable def(lr) shall denote its 

deficiency. A PD(n+)-group is an (orientable) Poincar6 duality group of dimension 

n. A [r, rail-complex X is aspherical if and only if rm(X) = 0. In that  case we 

shall say that  ~r has geometric dimension at most m, written g.d.Tr <_ m. 

1. Extensions of Z by finitely generated normal subgroups 

The L2-Betti numbers/~2)(X) of a finite complex X are defined in [At]. (See 

also [CG], [Ec2] and [Lfi]). They are multiplicative in finite covers, and for i = 0 

or 1 depend only on 7~1(X). In [CG] a limiting process is used to define L:-Betti  

numbers /~2) (y;  ~) for general actions of countable group r on a space Y, and 

it is shown that/3~2)(7r) =/3~2)(K~;~), where K~ is (any) contractible complex 

on which r acts freely. If X is a finite Poincar~ duality complex then these Betti 

numbers satisfy Poincar~ duality. The alternating sum of the L2-Betti numbers 

is the Euler characteristic ~(X) [At]. The usual Betti numbers of a space or 

group shall be denoted by/3i(X; Q) = d in~  Hi(X;  Q). 

THEOREM 1: Let 7r be a finitely presentable group such that ~2)(~r) = 0 for 

i < m, and let X be a [~r,m]f-complex. I f x ( X )  = 0 then X is aspherical. 

Proof: Since X is (m - 1)-connected B~2)(X) : ~2)(7r) = 0 for i < m and so 

x(X) : (-1) 'nB~)(X).  Hence j3~)(X) = 0 also, and so the L2-homology of X is 

trivial. Since X is m-dimensional zrm(X) = Hm(-~; Z) is a subgroup of the m th 

L2-homology group of X. Therefore ~r,n(X) : 0 and so X is aspherical. | 

If X = S 1 y S 1 then X is an aspherical [F(2), 1]f-complex and B0(2)(F(2)) = 0, 

but x ( X )  = -1  r 0. Thus the implication in the statement of this theorem 

cannot be reversed, in general. 

THEOREM 2: Let Z~ be a finitely presentable group. Then def(Tr) <_ 1 + ~2)(7r), 

with equality only if g.d.r <_ 2. 

Proof: Let X be a finite 2-complex corresponding to a presentation P for lr. 

Then def(P) = 1 - x(X) : 1 + B12)(7r) - j3~2)(X) < 1 + ~12)(7r). If def(P) = 
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1 + ~2)(~r) then ~2) (X)  = 0, so lr2(X) = H2()~;Z) = 0 and X is aspherical. 

Hence g.d.Tr _< 2. | 

Let G = F(2) x F(2). Then/3~2)(G) = 0, by Proposition 2.7 of [CG]. Moreover 

def(G) = 0 and g.d.G = 2; in fact 

(u, v, x,  y [ ux  = xu,  uy  = yu, v x  = xv ,  vy  = yv)  

is an optimal presentation. Thus the implication in the final sentence of the 

statement of this theorem cannot be reversed, in general. (Compare the Corollary 

of Theorem 3 below.) 

The following lemma is part of Theorem 2.1 of [L/i] (proven there under slightly 

stronger hypotheses). 

LEMMA ([L/ick]): I f  a f initely presentable group r is an extension o f  Z by  a 

f initely generated normal  subgroup N ,  then j3~ 2) (r) = 0. 

Proo~ Suppose that N is generated by g elements and let Nn be the preimage 

in 7r of the subgroup n Z  <_ Z.  Then [~r: Nn] -- n, so/3~2)(Nn) = n~2) ( r ) .  But 

each Nn is also finitely presentable and is generated by g + 1 elements. Hence 

~2) (N~) _< g + 1, and so ~2)(Tr) = 0. | 

If the Whitehead conjecture is false then either there is a finite nonaspherical 

2-complex X such that X U f  D 2 is contractible for some f:  S 1 --* X or there is an 

infinite ascending chain of nonaspherical 2-complexes whose union is contractible 

[Ho]. In the finite case x(X)  = 0 and so 7r = ~rl(X) has deficiency 1; moreover, ~r 

has weight 1 since it is normally generated by the conjugacy class represented by 

f .  Such groups are 2-knot groups. Conversely, the exterior of a ribbon n-knot or 

of a ribbon concordance between classical knots is homotopy equivalent to such a 

2-complex. (The asphericity of such ribbon exteriors has been raised in Question 

2 of [Co] and Question 6.5 of [Go].) If ~r' is finitely generated then/3~ 2) (~r) = 0, 

by Lfick's Lemma, and so X is aspherical, by Theorem 1. 

A group is called knot-like if it has abelianization Z and deficiency 1 IRa]. 

Rapaport  asked whether the commutator subgroup of a knot-like group must be 

free if it is finitely generated, and established this in the 2-generator, 1-relator case 

IRa]. Our next corollary provides a substantial partial answer to this question. 

COROLLARY: Let  7r be a f initely presentable group which is an extension o f  Z by  a 

f initely generated normal  subgroup N ,  and suppose that  j32(~r; Q) = j31(r; Q) - 1. 
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Then def(~r) = 1 i f  and only i f  g.d.lr _< 2. Ifdef(Tr) = 1 and N is almost finitely 

presentable then N is free. 

Proof: If def(~r) = 1 then g.d.~r _< 2 by Liick's Lemma and Theorem 2. 

Conversely, if X is a finite aspherical 2-complex with ~h(X) ~ r then x (X)  = 

1 -~31(r; Q) +~32(1r; Q) -- 0. After collapsing a maximal tree in X we may assume 

it has a single 0-cell, and then the presentation read off the 1- and 2-cells has 

deficiency 1. The final assertion then follows from Corollary 8.6 of [Bi]. | 

In particular, if the group of a fibred 2-knot has a presentation of deficiency 

1 then its commutator subgroup must be free. Any 2-knot with such a group 

is s-concordant to a fibred homotopy ribbon knot, by Theorem VIII.7 of [Hi2]. 

Must it in fact be a ribbon knot? 

The kernel of the homomorphism from the group F(2) x F(2) with presentation 

(u, v, x, y [ ux  = xu,  uy = yu, vx  = xv,  vy = yv) 

to Z which sends u and y to 0 and v and x to a generator is generated by u, 

vx  -1 and y, but is not free, as u and y generate a rank two abelian subgroup. 

(Thus this kernel is finitely generated but not almost finitely presentable. See 

page 119 of [Bi].) Silver has given examples of high-dimensional knot groups 

whose commutator subgroups are finitely generated but not finitely presentable 

[Sil]. He has also suggested that every knot-like group should have a finitely 

presentable HNN base. If this were true the Corollary would settle Rapaport 's  

question completely, for if the commutator subgroup is finitely generated then it 

is the unique HNN base [Si2]. 

2. In f in i te  a m e n a b l e  n o r m a l  s u b g r o u p s  

The following result is stated without proof on page 226 of [Gr]. I am grateful 

to Peter Linnell for explaining how it follows from the argument of w of [CG]. 

THEOREM ([Gromov]): Let  ~r be a group with an infinite amenable normal 

subgroup A. Then ;3~ 2) (lr) = 0 for all i. 

Proof: Since K , / A  x K ,  (with the diagonal ~r-action) is ~r-freely homotopy 

equivalent to K,~ we have ~2)(~r) = ~2)(K,~/A x K.; l r ) ,  for all i. This is in turn 

equal to B~2)(K~/A; ~r), by Proposition 2.2 of [CG]. Now the cell-stabilizers of the 

action of ~r on K~/A are all A, and by Theorem 0.2 of [CG], ;3~2)(A) = 0, for 
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all i. Since ~ 2 ) ( K ~ / A ;  7r) <_ ~j3~2)(A), by Theorem 0.1 of [CG], it follows that  

~2)(~r) -- ~2)(K, /A;  r) = O, for all i. | 

Since the amenability of A is used only to ensure that  352)(A) -- 0 for all i, it 

is sufficient to assume that A be subnormal in ~r and jS~ 2) (A) = 0 for all i. (Note 

however that  if a group has an infinite amenable subnormal subgroup then it has 

an infinite amenable normal subgroup.) 

The next result gives a converse to the Cheeger-Gromov extension of Gottlieb's 

Theorem. 

THEOREM 3: Let X be a [lr, re]l-complex and suppose that 1r has an infinite 

amenable normal subgroup. Then X is aspherical if and only if  )i(X) = O. 

Proof: Since )c(X) = (-1)mt3~)(X) this follows immediately from Gromov's 

Theorem and Theorem 1. | 

COROLLARY: Let ~r be a finitely presentable group with an infinite amenable 

normal subgroup A. Then def(~r) = 1 i f  and only i fg .d . r  _< 2. 

Proof: If X is an aspherical It,  2]f-complex then ~(X) = 0 by Gromov's 

Theorem, so def(r) = 1 - x(X) = 1. Conversely if X is the finite 2-complex 

corresponding to a presentation of deficiency 1 then x(X) = 0 and so X is 

aspherical by Theorem 3. | 

In [Hi3] it is shown that  if def(lr) = 1 and the subgroup A is elementary 

amenable then either A -- Z or r is metabelian. Is this true in general? (If the 

Tits alternative holds for groups of finite cohomological dimension this would be 

SO.) 

3. Applications to 4-manifo lds  

The following theorem is implicit in the addendum to [Ec2]. 

THEOREM ([Eckmann]): Let M be a finite PD4-complex with x(M) = 0 and 

let ~r = lrl(M). I f~2) ( l r )  = 0 then the natural map from H2(lr;Z[r]) to 

H2(M; Z[n]) is an isomorphism. In particular, i f  moreover HS(Ir; Z[~r]) -- 0 

for s < 2 then M is aspherical. 

Proof: Since M is a PD4-complex )~(M)= 2~(2)(7r) - 2~2)(lr)+f~2)(M). Since 

7r is infinite ~o(2)(r) = 0, and fl~2)(~r) = 0 by hypothesis. Hence f~2)(M) = 

x(M) = 0 also. It now follows from Proposition 1.2 of [Ec2] (the natural map 
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from unreduced L2-cohomology to ordinary cohomology factors through reduced 

L2-cohomology) and diagram (4) on page 504 of [Ec2] that the natural map from 

H2(M; Z[n]) to H2(h:/; Z) is 0 (where/~/is the universal cover of M) and so the 

map from H2(~r; Z[Tr]) to H2(M; Z[Tr]) is an isomorphism. The final assertion 

follows by equivariant Poincar~ duality in the universal covering space. | 

A related argument gives a complete and natural criterion for asphericity for 

closed 4-manifolds. 

THEOREM 4: Let M be a fni te  PD4-complex with fundamental group 7r. Then 

M is aspherical if  and only if ~r is a finitely presentable PD4-group of type F F  

and :~(M) = X(Tr). 

Proo~ The conditions are clearly necessary. Suppose that they hold. We 

may assume that both M and 7r are orientable, after passing to the subgroup 

Ker(wl(M)) N Ker(wl(7r)), if necessary. By the L2-Index theorem x(M) = 

~2)(M) - 2~12)(M) and :~(Tr) = ~2)(lr) - 21312)(M). Hence the classifying 

map CM: M ~ K(7r, 1) induces weak isomorphisms on reduced L 2 cohomology 

/~t2)(Tr) ~ / ~ 2 ) ( M )  for all i. 

The natural homomorphism f: H~2 )(M) ~ H2 (h:/; g2(Tr))" from unreduced L 2- 

cohomology factors through H~2)(M). The induced homomorphism is a homo- 

morphism of Hilbert modules and so has closed kernel. But the image of/~2)(7r) 

lies in this kernel. Hence f = 0. Since H2(r; Z[Tr]) = 0 the homomorphism from 

H2(M; Z[7r]) to H2(/~/; Z[7r]) obtained by forgetting Z[~r]-linearity is injective. 

Since /~/ is 1-connected the homomorphism from H2(21~/; Z[~r]) to H2(]t:/; ~2(7r)) 

induced by inclusion of coefficients is also injective. But the composite of these in- 

jections may also be factored as the natural map from H2(M; Z[~r]) to H~2)(M) 

followed by f .  Hence H2(M;Z[zc]) = 0 and so M is aspherical, by Poincar~ 

duality. | 

The finiteness assumptions on M and 7r can be relaxed if ~r satisfies the Weak 

Bass Conjecture. This theorem improves Theorem II.5 of [Hi5], which requires 

also that the classifying map CM: M ---* K(zr, 1) have nonzero degree. 

THEOREM 5: Let 7r be a PD+-group of type F F  and with X(r) = O. Then 

def(7r) < 0. 

Proof'. Suppose that r has a presentation of deficiency > 0, and let X be the 

corresponding 2-complex. Then B~2)(lr)- Bl2)(~r) _< ~ 2 ) ( X ) -  ~2)(~r) = x(X) _< 
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0. We also have /3~2)(r)- 2~2)(7r) -- X(~r) = 0. Hence /3~2)(7r) = /3~2)(7r) = 

x(X)  = 0. Therefore X is aspherical, by Theorem 1, and so c.d.~r <_ 2. But  this 

contradicts the hypothesis that r is a PD4-group. | 

Let Nil < GL(3, R) be the 3-dimensional nilpotent Lie group of upper trian- 

gular matrices with diagonal [1,1,1,] and let r = NilNGL(3, Z). Then M = S 1 x 

(Nil/F) is an aspherical closed 4-manifold with x(M) = 0, and ~h(M) ~ Z x F 

has a presentation (s, x, y I sx = xs, sy = ys, [x, Ix, y]] = [y, Ix, y]] -- 1) of defi- 

ciency -1. Is this best possible? 

The theorems of Gromov and Eckmann together enable us simplify the 

hypotheses of some theorems in Chapter VI of [Hih]. In the next result h 

shall denote the Hirsch length, a natural measure of the size of an elementary 

amenable group. (See [Hi3,5] for details.) 

THEOREM 6: Let M be a closed 4-manifold with x(M) = 0. Suppose that 

:r = 7rl ( M)  has an elementary amenable normal subgroup p with h(p) >_ 2 and 

H2(~r; Z[~r]) = O. Then M is aspherical. I f  h(p) = 2 then p is virtually abelian, 

while if  h(p) >_ 3 then M is homeomorphic to an infrasolvmanifold. 

Proo~ Since j3~ 2) (Tr) = 0 for all i, by the theorems of Eckmann and Gromov, 

M is aspherical. Hence p must be torsion free and the theorem follows from 

Theorems VI.2 and VI.11 of [Hih]. I 

If p is torsion free, of infinite index and h(p) = 2 then the hypothesis 

H2(~r; Z[Tr]) = 0 follows from [Mi]. (See Theorem VI.11 of [Hih].) The hy- 

pothesis that the index be infinite is necessary; every group with a presentation 

of the form (a, t [ tat -1 = a~l is torsion free and solvable of Hirsch length 2, and 

is the fundamental group of some closed orientable 4-manifold with Euler char- 

acteristic 0. If M is a closed orientable 4-manifold with x(M) = 0 and such that 

7r = 7h(M) is amenable, has one end and H2(~r; Z[r]) r 0 must 7r be one of these 

groups? If h(p) >_ 3 can the hypothesis on H2(~r; Z[~r]) be dropped completely? 

Can the hypotheses of this theorem be rephrased in terms of amenable normal 

subgroups, using homological dimension over Q rather than Hirsch length as a 

measure of the size of such groups? (This would follow from a Tits alternative 

for groups of finite cohomological dimension.) 

L2-Cohomology is used in [Hi6] to give a simple characterization of PD4- 

complexes which are homotopy equivalent to mapping tori. In particular, a closed 

4-manifold M is homotopy equivalent to the total space of a surface bundle over 
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a torus if and only if x (M)  = 0 and r = 7h(M) is an extension of Z 2 by a finitely 

presentable normal subgroup. The next result is an alternative characterization 

of 4-manifolds covered by such bundle spaces. 

THEOREM 7: Let M be a closed 4-manifold with ~(M) = 0 and such that r = 

~rl(M) has a normal subgroup G of infinite index which is a PD2-group. Then 

M is aspherical. I f  (G = 1 then M is finitely covered by a manifold which is 

simple homotopy equivalent to the total space of a surface bundle over the torus. 

Proo~ It follows easily from the LHS spectral sequence for ~r as an extension of 

H = lr/G by G that  HS(lr; Z[~r]) = 0 for s _< 2. After passing to a finite covering 

space if necessary, we may assume that the image of H in Out(G) is torsion free, 

since Out(G) is virtually of finite cohomological dimension. The image K of H 

in Out(G) is isomorphic to 7r/G.C~(G) and H is an extension of this group by 

G.C~(G)/G ~- C~(G)/(G. 

If ~G # 1, then it is an infinite (elementary) amenable normal subgroup of 

~r and so M is aspherical, by the theorems of Eckmann and Gromov. (The as- 

phericity also follows from Theorem II.6 of [Hi5], since Z[r] has a safe extension.) 

If ~G = 1 and H has an element of infinite order then ~2)(Tr) = 0 by Theorem 

3.1 of [Lii] and so M is aspherical by Eckmann's Theorem. Moreover v.c.d.H<_ 

v.c.d.K+c.d.C=(G) < oo and so H is virtually a PD2-group, by Theorem 9.11 

of [Bi]. On passing to a subgroup of finite index in ~r we may assume that  H 

is a PD+-group.  Since we then have 0 = X(zr) = x(G))I(H) and ~(G) # 0 we 

see that  x (H)  = 0. Hence H ~ Z 2. If H is torsion then its image in Out(G) 

is finite, hence trivial, so 7r = G.C~(G) and H ~ C~(G)/((G) -~ C~(G). Since 

G N C~(G) = (G is trivial r ~ G x C,~(G) ~- G x H. But then/3~2)(G x H) = 0, 

by Proposition 2.7 of [CG], and so G x H is a PD4-group, hence torsion free, 

contrary to the assumption that  H is an infinite torsion group. This completes 

the argument. | 

The strategy of the next result is adapted from that  of [Hi4]. 

THEOREM 8: Let M be a dosed 4-manifold with x(M) = 0 and such that ~r = 

~rl(M) is an extension of Z by an almost finitely presentable infinite normal 

subgroup N with a nontrivial finite normal subgroup F. Then M is homotopy 

equivalent to the mapping torus of a self homeomorphism of R P  2 x S 1. 

Proof'. Let M be the universal covering space of M. Since N is infinite and 

finitely generated lr has one end, and so Hi(/Q; Z) = 0 for i r 0 or 2. Let 
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H = 7r2(M) = H2(A:/; Z). We wish to show that H - Z, and that w = w l ( M )  

maps F isomorphically onto Z • = {+l}.  Since/312)(7r) = 0 by Liick's Lemma, 

Poincard duality and Eckmann's Theorem together give an isomorphism of left 

Z[lr]-modules II ~- H2(Tr; Z[Tr]). An application of the LHS spectral sequence for 

7r as an extension of Z by N then gives II --- H i ( N ;  Z[N]), which is a free abelian 

group. 

The normal closure of F in 7r is the product of the conjugates of F,  which are 

finite normal subgroups of N, and so is locally finite. If it is infinite then N has 

one end and so H ' ( r ;  Z[r]) = 0 for s <_ 2, by an LHS spectral sequence argument. 

Since locally finite groups are amenable/3~ 2) (~r) = 0, by Gromov's Theorem, and 

so M must be aspherical, by Eckmann's Theorem, contradicting the hypothesis 

that 7r has nontrivial torsion. Hence we may assume that  F is normal in r .  

Let f be a nontrivial element of F. Since F is normal in ~r the centralizer C~ (f)  

of f has finite index in 7r, and we may assume without loss of generality that F is 

generated by f and is central in ~r. It follows from the spectral sequence for the 

projection of h~/onto 2~1/F that there are isomorphisms H,+3(F; Z) ~ Ha(F; H) 

for all s >_ 4, since 2VI/F is a 4-dimensional complex. Here F acts trivially on Z, 

but we must determine its action on H. 

Now central elements n of N act trivially on H x (N; Z[N]) and hence via w(n) 

on H. (See [Hi4].) Thus if w(f )  = 1 the sequence 0 --* Z / [ f l Z  ~ H ~ II ---, 0 

is exact, where the right hand homomorphism is multiplication by I.f[. As II is 

torsion free this contradicts / r 1. Therefore if f is nontrivial it has order 2 and 

w ( f )  = -1 .  Hence w: F ~ Z • is an isomorphism and there is an exact sequence 

0 ---* H ---* II --* Z / 2 Z  --, O, where the left hand homomorphism is multiplication 

by 2. Since II is a free abelian group it must be infinite cyclic, and so A:/~_ S 2. 

The theorem now follows from Theorems VII.4 and VII.7 of [Hi5]. | 

4. Applications to 2-knots 

If L: #S 2 ~ S 4 is a 2-1ink M ( L )  shall denote the closed orientable 4-manifold 

obtained by surgery on the components of L. The link group is then 7rL = 

7rI(M(L)). If K is a 2-knot (~ --- 1) M ( K )  ~ shall denote the infinite cyclic 

covering space, with 1rl ( M ( K ) ' )  = ~rK'. 

THEOREM 9: Let L: #S  2 --* S 4 be a 2-1ink with group ~ = ~rL. I f  # ~ 2 then 

~r  is finite. I f  # = 1 and ~lr is infinite, then either ~r is a PD4-group (and so ~lr 
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is torsion free of rank 1 or 2) or H2(zr; Z[~r]) ~ 0 and ~Tr is finitely generated of 

rank 1 or is a torsion group. 

Proof: We have 3~2)(~r)- 2~2)(7r) _< x (M(L) )  = 2(1 - # ) .  If(Tr is infinite then 

/3~ 2) ( r )  = 0 by Gromov's Theorem, and clearly # > 0, so we must have # = 1. 

Hence L is a 2-knot. Moreover zr has one end, i.e., HS(~r; Z[~r]) = 0 for s _< 1. 

Hence if also H2(~r; Z[~r]) = 0 then M(L)  is aspherical, by Eckmann's Theorem. 

(In this case the centre is torsion free, and is of rank at most 2: see Theorem 

V.2 of [Hi2].) If (~r has an infinite cyclic subgroup A such that (zc/A is infinite 

then this cohomological condition holds, for then ~(Tr/A) is infinite, so 7r/A has 

one end, and so 7r is simply connected at co, by Theorem 1 of [Mi]. Thus if 

H2(Tr; Z[Tr]) ~ 0 then (~r is finitely generated of rank 1 or is a torsion group. 

| 

In all known cases the centre of a 2-knot group is finite cyclic, Z, Z @ (Z /2Z)  

or Z 2 and the centre of the group of a 2-1ink with more than one component 

is trivial. Most of the results in the case # = 1 follow also via the localization 

arguments of [Hi2], on observing that 7r/A cannot have two ends (since a knot 

group cannot be virtually Z 2) and has finite centre if it has infinitely many ends; 

however Gromov's Theorem is needed to exclude the possibility that (~r may be 

an infinite torsion group when p > 1. No examples of the latter type are known. 

THEOREM 10: Let K be a 2-knot whose group 7r = 7rK has a nontrivial abelian 

normal subgroup A. 

(i) I f  Tr' is finitely presentable, then M ( K ) '  is an orientable PD3-complex, and 

either Ir I is finite or A n zc ~ = 1 and A ~- Z or M ( K )  is aspherical and A is 

torsion free; 

(ii) i f  A has rank 2, then M ( K )  is aspherical and A is torsion free, and either 

7r p is a PD+-group with centre of rank 1 or A "~ Z 2 and ~r ~ is not finitely 

generated; 

(iii) i r A  has rank > 2, then A ~- Z 3 or Z 4 and M ( K )  is homeomorphic to an 

infrasolvmanifold. 

Proof: Suppose first that 7r p is finitely presentable. If A N lr ~ = 1 then A is 

isomorphic to a nontrivial subgroup of 7r/Td, and so A ~ Z. Hence we may 

assume that  ~r ~ is infinite and A n ~r ~ r 1. If A N r '  were finite then r would 

be an extension of Z by Z @ (Z/2Z) ,  by Theorem 8. But no such group has 

abelianization Z. Hence we may assume that  A N ~r ~ is infinite. Since lr t then has 
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one end HS(~r; Z[Tr]) = 0 for s _< 2, by an LHS spectral sequence argument. This 

also holds if A has rank greater than 1 (without assuming ~r' finitely presentable), 

by Theorem III.4 of (Hi2]. The theorems of Gromov and Eckmann then imply 

that  M ( K )  is aspherical, and so 7r is a PDa+-group and A is torsion free. In all 

these cases M ( K )  I is an orientable PD3-complex, by the main result of [Hi6]. 

The further observations in cases (ii) and (iii) follow from Theorem 6 above and 

Theorems V.1, V.3, V.4 and VI.6 of [Hi2]. I 

If we assume only that ~r' is finitely generated, then this theorem and Theorem 

IV.5 of [Hi2] together imply that  either ~r ~ is finite or A n 7r' -- 1 or M ( K )  

is aspherical or A is a torsion group. There are no known examples of 2-knot 

groups ~r with 7d finitely generated but not finitely presentable. (See [Sill for 

higher dimensional examples.) 

If A has rank 2 but is not free abelian then r '  is a PD+-group with centre 

A n 7r' of rank 1 but not finitely generated (which seems unlikely). There are 

no known examples with A - Z 2 and ~r ~ not finitely generated. All the other 

possibilities allowed by this theorem occur. (See [Hi2].) 

Note finally that  Theorem 5 implies that no 2-knot group lr with deficiency 1 

can be a PD+-group of type F F .  

ACKNOWLEDGEMENT: This work was supported by an ARC Small Grant at 

the University of Sydney. 

References  

[At] M.F .  Atiyah, Elliptic operators, discrete groups and yon Neumann algebras, 

Ast6risque 32/33 (1976), 43-72. 

[Bi] R. Bieri, Homological Dimension of Discrete Groups, Queen Mary College Lecture 

Notes, London, 1976. 

[CG] J. Cheeger and M. Gromov, L2-Cohomology and group cohomology, Topology 

25 (1986), 189-215. 

[Co] T.D. Cochran, Ribbon knots in S 4, Journal of the London Mathematical Society 

28 (1983), 563-576. 

[Ecl] B. Eckmann, Amenable groups and Euler characteristic, Commentarii 

Mathematici Helvetici 67 (1992), 383-393. 

[Ec2] B. Eckmann, Manifolds of even dimension with amenable fundamental group, 

Commentarii Mathematici Helvetici 69 (1994), 501-511. 



282 J.A. HILLMAN Isr. J. Math. 

[Hil] 

[Hi6] 

[no] 

[Li] 

[Go] C. McA. Gordon, Ribbon concordance of knots in the 3-sphere, Mathematische 

Annalen 257 (1981), 157-170. 

[Gt] D.H. Gottlieb, A certa/n subgroup of the fundamental group, American Journal 

of Mathematics 87 (1965), 840-856. 

[Gr] M. Gromov, Geometric Group Theory, Vol. 2: Asymptotic Invariants of Infinite 

Groups (G. A. Niblo and M. A. Roller, eds.), London Mathematical Society 

Lecture Note Series 182, Cambridge University Press, Cambridge-New York- 

Melbourne, 1993. 

J. A. Hillman, Aspherical four.manifolds and the centres of two-knot groups, 

Commentarii Mathematici Helvetici 56 (1981), 465-473. Corrigendum: ibid. 58 

(1983), 166. 

[Hi2] J. A. Hillman, 2-Knots and their Groups, Australian Mathematical Society 
Lecture Series 5, Cambridge University Press, Cambridge-New York-Melbourne, 

1989. 

[Hi3] J. A. Hillman, Elementary amenable groups and 4-manifolds with Euler charac- 

teristic O, Journal of the American Mathematical Society 50 (1991), 160-170. 

[Hi4] J. A. Hillman, On 3-dimensional Poincard duality complexes and 2-knot groups, 

MathematicM Proceedings of the Cambridge Philosophical Society 114 (1993), 

215-218. 

[Hi5] J. A. Hillman, The Algebraic Characterization of Geometric Four-Manifolds, 

London Mathematical Society Lecture Note Series 198, Cambridge University 
Press, Cambridge-New York-Melbourne, 1994. 

J. A. Hillman, On 4-dimensional mapping tori and product geometries, Journal 
of the London Mathematical Society, to appear. 

J. Howie, Some remarks on a problem of J.H.C. Whitehead, Topology 22 (1983), 

475-485. 

P. A. Linnell, Zero divisors and group yon Neumann algebras, Pacific Journal of 

Mathematics 149 (1991), 349-363. 

[Lii] W. Liick, L2-Betti numbers of mapping tori and groups, Topology 33 (1994), 

203-214. 

[Mi] M. Mihalik, Solvable groups that are simply connected at ~ ,  Mathematische 

Zeitschrift 195 (1987), 79-87. 

[Ra] E. Rapaport Strasser, Knot-like groups, in Knots, Groups and 3-Manifolds 

(L.P.Neuwirth, ed.), Annals of Mathematics Study 84, Princeton University 

Press, Princeton, N.J., 1975, pp. 119-133. 



Vol. 99, 1997 ON L2-HOMOLOGY AND ASPHERICITY 283 

[Ro] S. Rosset, A vanishing theorem for Euler characteristics, Mathematische 

Zeitschrift 185 (1984), 211-215. 

[Sill D. Silver, Examples of 3-knots with no minimal Seifert manifolds, Mathematical 
Proceedings of the Cambridge Philosophical Society 110 (1991), 417-420. 

[Si2] D. Silver, HNN bases and high-dimensional knots, Proceedings of the American 

Mathematical Society 124 (1996), 1247-1252. 


